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Efficiency of a stirred chemical reaction in a closed vessel
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Abstract. We perform a numerical study of the burning efficiency in a closed vessel. Starting with a little
spot of product, we compute the time needed to complete the reaction in the container. Inside the vessel
there is a cellular flow that transports the reactants. Our main result is that if the size of the container
is not very large compared with the typical length of the velocity field, one has a plateau of the burning
time as a function of the strength of the velocity field, U . This means that, once the plateau is reached, a
further increase of U does not reduce the time needed to complete the reaction. This plateau arises when
we consider both a stationary and a time-dependent cellular flow, and we give analytical and numerical
arguments that try to explain why it appears. Also a comparison of the results for the finite system with
the infinite case shows the dramatic effect of the finite size.

PACS. 05.45.-a Nonlinear dynamics and nonlinear dynamical systems – 47.70.Fw Chemically reactive flows

Numerous physical, biological and chemical systems show
the propagation of a stable phase into an unstable one
[1,2]. When this phenomenon takes place in a fluid,
one generally speaks of front propagation in advection-
reaction-diffusion (ARD) systems. Under this generic
name one indicates many different processes, e.g., the
propagation of plankton populations in ocean currents [3],
the transport of reacting pollutants in the atmosphere
(e.g. ozone) [4], the effect of stirring on complex chemi-
cal reactions [5], or combustion [6].

In the last years much effort has been done to study
the influence of an advection field on the front dynamics.
In particular, it is well established that the front speed
in a laminar or turbulent fluid is enhanced with respect
to the propagation in a medium at rest [7,8]. In the con-
text of (premixed) combustion processes the flame front
area is proportional to the front speed and, therefore, an
increasing of the front area due to the fluid stirring gives
rise to an enhancement of the burning efficiency, that is,
the system burns faster.

It is important to note that most of the theoretical
studies and, in particular, the above results about the
enhancement of the burning efficiency, have been shown
for an infinite-size system (in the propagation direction).
Also, asymptotic quantities like the front speed are only
properly defined for infinite (or with periodic boundary
conditions) systems.

a e-mail: cristobal.lopez@phys.uniroma1.it

On the other hand, from a practical point of view one
usually has to treat cases where the size of the domain
is not much larger than the typical length scale of the
velocity field [9]. The spreading of organisms in a lake or
in a small closed sea basin, and the combustion of fuel in
a machine motor are two clear examples where this may
happen and, therefore, non-asymptotic properties can be
very important [10,11].

In this work we treat the case of an ARD process con-
fined in a closed region. Beginning with a small quantity of
material in the stable phase (also called burnt material),
we numerically compute the time needed for a given per-
centage of the total region to be also burnt (called in the
following, the burning time). The velocity field is of cellu-
lar flow type, i.e., it is formed by circulating cells of fluid.
Both, a stationary and a chaotic time-dependent cellular
flow will be considered. Our main result, obtained either
for the time-independent and for the time-dependent case,
is that increasing the typical velocity of the field one has
a saturation of the burning rate. This saturation happens
when the advection time scale is much shorter than the
reaction time scale. Also, we compare our results with the
infinite-size case, studying the crossover from finite size
systems to the asymptotic regime. We observe that the
relevance of the system size is more important than ex-
pected a priori.

Let us consider the simplest non trivial case described
by a scalar field θ(x, t) which represents the concentration
of reaction products, such that θ is equal one in the
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space-time coordinates where the reaction is over (the
stable phase), and θ is zero where there is fresh material
(the unstable phase). The dynamical evolution of this
field is given by

∂tθ + v · ∇θ = D∇2θ +
f(θ)
τ

, (1)

where v(x, t) is a two-dimensional incompressible velocity
field, D is the diffusion coefficient, and f(θ) is the reaction
term, where τ is the time scale for the reaction
activity. For the reaction term we use the Fisher-
Kolmogorov-Petrovskii-Piskunov (FKPP) nonlinearity
[12], f(θ) = θ(1 − θ). Concerning the velocity field,
v, we first adopt a simple stationary incompressible
two-dimensional flow defined by the stream-function

ψ(x, y) =
UL

π
sin

(πx
L

)
sin

(πy
L

)
, (2)

being the parameter U the maximum vertical velocity of
the flow, and L the size of one cell. For a study of the
transport properties in the field (2) see reference [13]; the
asymptotic behaviour of front propagation is discussed in
reference [15]. The equations of motion for a fluid element
are given by

{
ẋ = ∂yψ

ẏ = −∂xψ.
(3)

In this work the reaction processes described by (1) take
place in a closed recipient. This confinement is imple-
mented by assuming rigid boundary conditions on the box
0 ≤ y ≤ L and 0 ≤ x ≤ nL, where n is the number of
circulating cells of the flow. One approaches to the asymp-
totic case increasing the value of n.

The settling of the problem is completed when we indi-
cate the initial conditions, in our case a small initial spot
of burnt material which starts the reaction. Thus, we use
in all our numerical experiments a small circle of radius r
filled with stable material, that is placed at the initial time
in the box filled with unstable material. The initial coor-
dinates of the center of this circle are (x = r, y = L/2)
(the circle is on the border of the box; this mimics the
injection of reacting material from the outside). As antic-
ipated, the principal observable under investigation is the
time needed for a given percentage of the total area to
be burnt. We define S(t) = 1

∆S

∫
∆S dxdyθ(x, y, t) as the

percentage of area burnt at time t, where ∆S = L2n is
the total area of the container. In our case, by choosing an
appropriate r the initial burnt material is S(0) = 0.005/n,
which is the 0.5% of one cell. The burning time tα is de-
fined as the time needed for the percentage α of the total
area of the recipient to be burnt, i.e., S(tα) = α.

Numerically, to integrate (1) we use the Feynman-Kac
(FK) or stochastic Lagrangian approach. This algorithm
is based on the relation between ARD systems and the

Fig. 1. tα against the flow strength U with τ = 0.4, n = 1
and for various α: α = 0.2 (+), α = 0.5 (×), α = 0.7 (�),
α = 0.9 (◦).

Langevin equation describing the evolution of test parti-
cles under the combined influence of the velocity field and
the Brownian motion [14]. The field evolution is computed
using the Lagrangian propagator plus a Monte-Carlo inte-
gration for the diffusive term. Then, the reaction propaga-
tor accounts for the reacting term (for details see [15,16]).
We also impose a rigid wall condition in the boundaries.
In the following we assume L = π and D = 0.04.

We first show in Figure 1 the influence of the stirring
intensity on the burning efficiency, when different percent-
ages, α, of the final burnt area are considered.

Increasing the maximum velocity of the flow, U , tα de-
creases monotonically until a plateau is reached. Then, a
further increasing of the flow velocity does not decrease
the burning time tα. We remark that this effect also ap-
pears for different finite values of the system size (different
values of n), and different chemical rates τ . At first glance,
the appearance of the plateau seems to be surprising: in a
closed container the burning efficiency is not always im-
proved by increasing the stirring intensity.

The existence of the plateau can be understood noting
that it is reached only when the reaction time, τ , is large
compared with the advection time, τa = L/U . In this case,
in the first stages of the process (in which only a small
fraction of the volume is active), because of advection and
diffusion the active material has a rapid spreading and
invades the whole container with value of θ small but dif-
ferent from zero. Then, because of the reaction term, one
has an exponential increasing of the value of θ all over the
cell, until it is completely burned. In this two step process,
spreading and reaction, the increasing of the stirring in-
tensity do not correspond to an increasing of the burning
efficiency.

A direct comparison between the finite and the infinite
system is interesting. In Figure 2 we show the burning
time scaled with the system size, i.e., tα/n, against the
typical flow velocity, U , for some values of n. We also plot
the data obtained for an infinite system, which have been
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Fig. 2. The burning time per unit-cell, tα/n, at various U for
τ = 0.4 and α = 0.9. The plots are for different system’s sizes:
n = 1 (+), n = 2 (×), n = 4 (∗), n = 8 (�) and n = 12 (◦). It
is also shown (•) the burning time calculated using the front
speed: t = nL/vf .

calculated from the front speed vf of the infinite system
data according to

tα ' nL

vf
, (4)

which is expected to hold for α close to 1 and large n.
Figure 2 shows that the asymptotic reacting time

(given by vf ) is reached only in the large size limit, i.e., n
large, while the dynamics of small systems is dominated
by the non asymptotic properties of the evolution.

Since the considered bidimensional velocity field (2)
is stationary the Lagrangian trajectories are not chaotic.
Nevertheless also in the case of Lagrangian chaotic trajec-
tories, obtained with a time-dependent flow, the burning
time shows the same qualitative behaviours shown in
Figures 1 and 2. Let us consider a time-dependent flow
whose stream function is

ψ(x, y, t) = U sin(x +B(x) cos(ωt)) sin(y) . (5)

This is sufficient to induce Lagrangian chaos [17] in the
evolution of passive tracers advected by the velocity field
(3) generated by (5). Because we are dealing with closed
systems B(x) is constructed in such a way that it is zero
near the boundary of the system and almost constant, B0,
otherwise: B(x) = B0(1−exp(−1/x)−exp(−1/(nL−x))).

In Figure 3 we show the curve tα against U for different
values of α. At difference from the previous case, when
unsteady flow is concerned there is not a simple plateau
in tα, but an oscillatory behaviour due to the interplay
between the oscillation period of the separatrices and the
circulation time inside the cell. It happens that circulation
and oscillation “synchronize” producing a very efficient
and coherent way of transferring passive particles from

Fig. 3. tα against the flow strength U for various α in the
unsteady case (B = 1.1 and ω = 2.09): α = 0.2 (+), α = 0.5
(×), α = 0.7 (�), α = 0.9 (◦). The flow is confined in two cells
and τ = 0.4.

one cell to the other. A similar, but much more impressive,
feature occurs for the effective diffusion coefficient in the
horizontal direction [18]. Comparing Figures 2 and 3 one
has that for low values of U the mixing induced by the
time dependence makes that the system burns quite faster.
For higher U , the mixing properties of the flow are not
sufficient to improve furthermore the burning efficiency.
Also in this case the physical reason for the presence of
the plateau at large U is due to a time separation between
the initial spreading and reaction mechanisms. The only
difference is that the spreading time is smaller and the
plateau appears sooner.

Let us study the dependence of the saturation time
tsα(τ), which is the value of the burning time in the
plateau, as a function of τ . In the unsteady case, we choose
as saturation time the minimum value of tα at varying U .

In Figure 4 we show the result for the unsteady case,
which can be interpreted following the same arguments
used to explain the existence of the plateau. As we have
previously noted, the system dynamics in the case of
large U can be divided in two parts: the initial spreading
regime and the reacting dominated regime. This implies,
together with a dimensional argument, tsα(τ) = t̃ + bατ ,
where t̃ is the spreading time. Thus, there is a linear de-
pendence of tsα with τ as shown in Figure 4, which has
been obtained for the time-dependent flow, but similar
results hold also for the steady case.

The value of the slope of the saturation time against τ ,
bα, can be analytically studied. In the regime of very high
U such that the plateau is reached, after the time t̃ the ini-
tial condition is spread out through the whole container
and one can approximate θ(x, y, t) ∼ θ̃(t), being θ̃(t) a
rough average of the θ field in the container, which evolves
following only the reaction part of (1). This is because,
as we have argued before, after t̃ the important physi-
cal mechanism of burning comes from the chemical ac-
tivity and not from the mixing due to the advection and
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Fig. 4. Plot of ts
α(τ ) vs. τ at various percentages of filling α in

the time-dependent case (B = 1.1 and ω = 2.09): α = 0.2 (+),
α = 0.5 (×), α = 0.7 (�), α = 0.9 (◦). For each curve we have
superimposed the linear fit ts

α(τ ) = t̃+ bατ , where t̃ and bα are
fitting parameters. Here n = 2.

diffusion. Then S(t) = θ̃(t) for t > t̃, and so:

dS
dt

=
1
τ
S(1 − S). (6)

This can be integrated from t̃ to t, taking into account that
we can approximate S(t̃) ∼ S(0), i.e., in the spreading
regime we can suppose that the reaction does not act.
Therefore, one has

log
(

S(t)
1 − S(t)

)
− log

(
S(0)

1 − S(0)

)
=
t− t̃

τ
· (7)

Finally, as S(tsα) = α we get

tsα = t̃+ τ log
(
α(1 − S(0))
(1 − α)S(0)

)
≡ t̃+ bατ , (8)

which gives the dependence of bα on the percentage of
burnt material, α.

For the time-independent cellular flow the reasonings
follow closely the former ones. Let us just note that, in
this case, because the mixing effect across the streamlines
is only due to the diffusion term, the above approximation
is particularly rough. Nevertheless, equation (8) is in ex-
cellent agreement with the numerical results, see Figure 5,
confirming once again the picture presented in this paper.

Summarizing, we have performed a numerical study of
an advection-reaction-diffusion system confined in a closed
vessel, using stationary and time-dependent cellular flows.
Beginning with a small quantity of the active phase, we
have calculated the time needed for a percentage of the
total area to be burnt. Thus, our numerical experiments
may represent the spreading of an organism in a lake or
the combustion of a material in a vessel. The main les-
son to learn from our studies is that the influence of the

Fig. 5. The slope, bα, of the saturation time ts
α against τ , that

is, the slope of the curves in Figure 4 (with an additional value
for α = 0.95), vs the percentage α. With (�) the numerical
values for time-dependent flow, with (∗) the numerical value
(rescaled) for steady flow, and with the solid line the prediction
given by (8).

system size is very important [19]. In particular, we have
shown that for large stirring intensity compared with the
reaction time, the burning time saturates, giving rise to
the unexpected result that increasing furthermore the flow
velocity there is not an improvement of the burning effi-
ciency. Moreover we have shown that the burning time in
the plateau is proportional to the reaction time-scale. Let
us note that when there is no clear scale separation be-
tween the characteristic time of spreading and reaction,
the dynamics could be very complicated, and one can-
not found a general behaviour. To conclude, we have to
mention that a similar scenario, i.e., the appearance of
the plateau in the burning time, has been obtained for
other types of chemical reactions f(θ), like the Arrhenius
f(θ) = (1 − θ) exp(−θ0/θ) (θ0 constant) or the Zeldovich
function f(θ) = θ2(1 − θ).
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